- empty
Return a new array of given shape and type.
np.empty((3,3))
>>>
array([[-1., 0., 5.],
[12., 18., 24.],
[35., 60., inf]])
- where
Return elements depending on condition.
ar=np.arange(1,10)
np.where(ar>5)
>>>
(array([5, 6, 7, 8]),)
- allclose
Returns True if two arrays are element-wise equal.
np.allclose([2,3],[2,3],equal_nan=True)
>>>
True
equal_nan : Whether to compare NaN’s as equal. If True, NaN’s in a will be considered equal to NaN’s in b in the output array.
- dot
Multiply of two arrays.
a=[[1,2],[4,5]]
b=[[4,5],[4,5]]
np.dot(a,b)
>>>
array([[12, 15],
[36, 45]])
- argsort
Argument Sort, returns index of array.
a=np.array([1.5, 0.2, 4.2, 2.5])
s=a.argsort()
print(s)
print(a[s])
>>>
[1 0 3 2]
[0.2 1.5 2.5 4.2]
- corrcoef
Correlation coefficients, it returns Pearson product-moment correlation coefficients.
user_id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ... 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
movie title
'Til There Was You (1997) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1-900 (1994) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
...
result.shape
>>>
(1664, 12)
corr_mat=np.corrcoef(result)
corr_mat.shape
>>>
(1664, 1664)
- astype
numpy.ndarray.astype() : Change the numpy.ndarray type as ()
te_array
>>>
array([[False, False, False, True, False, True, True, True, True,
False, True],
[False, False, True, True, False, True, False, True, True,
False, True],
[ True, False, False, True, False, True, True, False, False,
False, False],
[False, True, False, False, False, True, True, False, False,
True, True],
[False, True, False, True, True, True, False, False, True,
False, False]])
te_array.astype('int')
>>>
array([[0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1],
[0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1],
[1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1],
[0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0]])
- nan
Replace NaN values with zeros.
NTM_df['ACCD_DMG_PROTO_NM']=NTM_df['ACCD_DMG_PROTO_NM'].replace(np.nan,0)
- hstack
Horizontally stack.
a=np.array((1,2,3))
b=np.array((4,5,6))
np.hstack((a,b))
>>>
array([1, 2, 3, 4, 5, 6])
- argmax
Returns the indices of the maximum values along an axis.
reference : https://geekflare.com/numpy-argmax-function-python/
a=np.arange(6).reshape(2,3)
a
>>>
array([[0, 1, 2],
[3, 4, 5]])
np.argmax(a,axis=1)
>>>
array([2, 2])
np.argmax(a,axis=0)
>>>
array([1, 1, 1])
(19,19,5,80)
- Axis 0 = 19 elements
- Axis 1 = 19 elements
- Axis 2 = 5 elements
- Axis 3 = 80 elements
Now, negative numbers work exactly like in python lists, in numpy arrays, etc. Negative numbers represent the inverse order:
- Axis -1 = 80 elements
- Axis -2 = 5 elements
- Axis -3 = 19 elements
- Axis -4 = 19 elements
When you pass the axis parameter to the argmax function, the indices returned will be based on this axis. Your results will lose this specific axes, but keep the others.
See what shape argmax will return for each index:
- K.argmax(a,axis= 0 or -4) returns (19,5,80) with values from 0 to 18
- K.argmax(a,axis= 1 or -3) returns (19,5,80) with values from 0 to 18
- K.argmax(a,axis= 2 or -2) returns (19,19,80) with values from 0 to 4
- K.argmax(a,axis= 3 or -1) returns (19,19,5) with values from 0 to 79
'Analyze Data > Python Libraries' 카테고리의 다른 글
numpy-axis, expand_dims (0) | 2023.05.24 |
---|---|
numpy-random (0) | 2022.12.29 |
numpy-ndim, ravel, permutation, clip, subtract (0) | 2022.05.10 |
regular expression (0) | 2022.04.26 |
collections-Counter, most_common, FreqDist, defaultdict (0) | 2022.03.04 |