- linspace
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
endpoint : bool, optional
If True, stop is the last sample. Otherwise, it is not included. Default is True.
retstep : bool, optional
If True, return (samples, step), where step is the spacing between samples.
np.linspace(2.0, 3.0, num=5)
>>>
array([2. , 2.25, 2.5 , 2.75, 3. ])
np.linspace(2.0, 3.0, num=5, endpoint=False)
>>>
array([2. , 2.2, 2.4, 2.6, 2.8])
np.linspace(2.0, 3.0, num=5, retstep=True)
>>>
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
- interp
One-dimensional linear interpolation for monotonically increasing sample points.
Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x.
x : array_like
The x-coordinates at which to evaluate the interpolated values.
xp : 1-D sequence of floats
The x-coordinates of the data points, must be increasing if argument period is not specified. Otherwise, xp is internally sorted after normalizing the periodic boundaries with xp = xp % period.
fp : 1-D sequence of float or complex
The y-coordinates of the data points, same length as xp.
xp = [1, 2, 3]
fp = [3, 2, 0]
np.interp(2.5, xp, fp)
>>>
1.0
np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
>>>
array([3. , 3. , 2.5 , 0.56, 0. ])
'Analyze Data > Python Libraries' 카테고리의 다른 글
numpy-concatenate (0) | 2023.06.07 |
---|---|
numpy-identity (0) | 2023.06.02 |
numpy-np.c_[] VS np.r_[] (0) | 2023.05.25 |
numpy-axis, expand_dims (0) | 2023.05.24 |
numpy-random (0) | 2022.12.29 |