- reduce_sum
Computes the sum of elements across dimensions of a tensor.
- keepdims=False
The rank of the tensor is reduced by 1 for each of the entries in axis
A = tf.constant([[[1, 2, 3]], [[4, 5, 6]]])
tf.reduce_sum(A)=21
tf.reduce_sum(A, 0)=[[5 7 9]]
tf.reduce_sum(A, 1)=[[1 2 3]
[4 5 6]]
tf.reduce_sum(A, 2)=[[ 6]
[15]]
- keepdims=True
The reduced dimensions are retained with length 1.
tf.reduce_sum(A,keepdims=True))=[[[21]]]
tf.reduce_sum(A, 0,keepdims=True)=[[[5 7 9]]]
tf.reduce_sum(A, 1,keepdims=True)=[[[1 2 3]]
[[4 5 6]]]
tf.reduce_sum(A, 2,keepdims=True)=[[[ 6]]
[[15]]]
- cast
Casts a tensor to a new type.
tf.cast(x, dtype, name=None)
- argmax
Returns the index with the largest value.
tf.math.argmax(input,axis=None,output_type=tf.dtypes.int64,name=None))
- image_dataset_from_directory
Generates a tf.data.Dataset from image files in a directory.
tf.keras.utils.image_dataset_from_directory(
directory,
labels='inferred',
label_mode='int',
class_names=None,
color_mode='rgb',
batch_size=32,
image_size=(256, 256),
shuffle=True,
seed=None,
validation_split=None,
subset=None,
interpolation='bilinear',
follow_links=False,
crop_to_aspect_ratio=False,
**kwargs)
- one_hot
Returns a one-hot tensor.
tf.one_hot(indices,depth,on_value=None,off_value=None,axis=None,dtype=None,name=None)
- reduce_mean
Computes the mean of elements across dimensions of a tensor.
tf.math.reduce_mean(input_tensor, axis=None, keepdims=False, name=None)
- assign_sub
It used for updating the value of a TensorFlow variable by subtracting another value from it.
tf.assign_sub(ref, value, use_locking=None, name=None)
- ref: This is a TensorFlow variable. The value of this variable will be updated by subtracting the value specified in the next argument.
- value: This is the value that will be subtracted from the variable referenced by ref.
- use_locking: (Optional) If True, use locking during the operation to prevent concurrent updates. If None, the system decides.
- name: (Optional) A name for the operation.
For example,
A.assign_sub(B)
meaning
A = A - B
A -= B
- boolean_mask
Apply boolean mask to tensor.
tf.boolean_mask(tensor, mask, axis=None, name='boolean_mask')
tensor = [[1, 2], [3, 4], [5, 6]] # 2-D example
mask = np.array([True, False, True])
tf.boolean_mask(tensor, mask)
>>>
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[1, 2],
[5, 6]], dtype=int32)>
- random.normal
Outputs random values from a normal distribution.
stddev : A Tensor or Python value of type dtype, broadcastable with mean. The standard deviation of the normal distribution.
tf.random.normal(
shape,
mean=0.0,
stddev=1.0,
dtype=tf.dtypes.float32,
seed=None,
name=None
)
- zeros
Creates a tensor with all elements set to zero.
tf.zeros(
shape,
dtype=tf.dtypes.float32,
name=None,
layout=None
)
'Deep Learning > Tensorflow' 카테고리의 다른 글
Layers-Sequential, input_shape, Flatten, Dense (0) | 2023.12.19 |
---|---|
GradientTape (0) | 2023.12.12 |
LSTM (0) | 2022.09.15 |
Keras-Preprocessing, One-hot encoding, Word Embedding , Modeling, Compile (0) | 2021.04.09 |
keras-Tokenizer (0) | 2021.03.08 |