¡Hola, Mundo!

  • 홈
  • 태그
  • 방명록

AlexNet 1

AlexNet

AlexNet - It consists of 5 convolution layers, 3 max-pooling layers, 2 Normalized layers, 2 fully connected layers and 1 SoftMax layer. - Each convolution layer consists of a convolution filter and a non-linear activation function called “ReLU”. - The pooling layers are used to perform the max-pooling function - and the input size is fixed due to the presence of fully connected layers. The input..

Deep Learning/CNN 2024.01.03
이전
1
다음
더보기
  • 분류 전체보기 (352)
    • Autonomous Vehicle (55)
      • Theory (14)
      • Sensors (11)
      • Video Geometry (24)
    • Deep Learning (20)
      • PyTorch (10)
      • Tensorflow (8)
      • CNN (7)
      • Object Detection (16)
    • Machine Learning (18)
    • Reinforcement Learning (4)
    • Analyze Data (29)
      • Python (2)
      • Python Libraries (20)
      • Measure of similarity (7)
    • KAFKA (6)
    • d3.js (20)
    • Environment (9)
      • Anaconda (4)
      • VisualStudioCode (3)
      • Jupyter (2)
    • JavaScript (10)
    • C# (6)
    • Linux (15)
      • terminal (9)
      • Nvidia (3)
    • Docker (17)
    • Git (7)
    • Concept (8)
      • Network (3)
    • Elastic Stack (6)
      • Elasticsearch (5)
      • Logstash (1)
    • Basic Python (49)
      • FastAPI (3)
      • Data Structure (1)
      • Workbook (5)
    • DataBase (11)
      • MYSQL (6)
      • MariaDB (1)
    • Math (20)
    • About me (1)

Tag

yield from, zeros, selectall, Sigmoid function, Step Function, batch size, forward propagation, docker-compose, randn, Regular Expression, abstractmethod, classmethod, Filter, axis, global variable, d3js, kafka, nvidia-smi, textdistance, 3D Rotation Matrix,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2025/12   »
일 월 화 수 목 금 토
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Copyright © Kakao Corp. All rights reserved.

티스토리툴바