¡Hola, Mundo!

  • 홈
  • 태그
  • 방명록

LMS 1

Least Square Method(Least Mean Square)

Least Square Method(Least Mean Square) The way how to obtain parameters to minimize the sum of data and residual(error). In other words, to obtain parameters(a, b) with minimum E. - y = f(x) : Linear - ei : Residual(Error) - (xi, yi) : Data - a, b : Parameters y = f(x) : Linear Regression It can be expressed as below. Error Distance between the point and y. Sum of the square errors Matrix Equati..

Math 2024.03.08
이전
1
다음
더보기
  • 분류 전체보기 (352)
    • Autonomous Vehicle (55)
      • Theory (14)
      • Sensors (11)
      • Video Geometry (24)
    • Deep Learning (20)
      • PyTorch (10)
      • Tensorflow (8)
      • CNN (7)
      • Object Detection (16)
    • Machine Learning (18)
    • Reinforcement Learning (4)
    • Analyze Data (29)
      • Python (2)
      • Python Libraries (20)
      • Measure of similarity (7)
    • KAFKA (6)
    • d3.js (20)
    • Environment (9)
      • Anaconda (4)
      • VisualStudioCode (3)
      • Jupyter (2)
    • JavaScript (10)
    • C# (6)
    • Linux (15)
      • terminal (9)
      • Nvidia (3)
    • Docker (17)
    • Git (7)
    • Concept (8)
      • Network (3)
    • Elastic Stack (6)
      • Elasticsearch (5)
      • Logstash (1)
    • Basic Python (49)
      • FastAPI (3)
      • Data Structure (1)
      • Workbook (5)
    • DataBase (11)
      • MYSQL (6)
      • MariaDB (1)
    • Math (20)
    • About me (1)

Tag

3D Rotation Matrix, zeros, classmethod, Regular Expression, randn, global variable, abstractmethod, selectall, textdistance, Filter, axis, kafka, nvidia-smi, Step Function, docker-compose, forward propagation, Sigmoid function, batch size, d3js, yield from,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

Copyright © Kakao Corp. All rights reserved.

티스토리툴바