¡Hola, Mundo!

  • 홈
  • 태그
  • 방명록

parametric 1

[Uncertainty] Gaussian VS Samples

Each pose (at time step i) is represented as:\[ \mathbf{X}_i = [x, y, z, r, p, h]^\top \]This is the 6-DoF (degrees of freedom) pose of the robot at one point in time.If the robot moves through multiple time steps: \[ X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \]This concatenates all poses into one large state vector over a trajectory or sequence of observations.- Since full s..

Autonomous Vehicle/Video Geometry 2025.11.27
이전
1
다음
더보기
  • 분류 전체보기 (359)
    • Autonomous Vehicle (56)
      • Theory (14)
      • Sensors (11)
      • Video Geometry (25)
    • Deep Learning (21)
      • PyTorch (11)
      • Tensorflow (8)
      • CNN (7)
      • Object Detection (16)
    • Machine Learning (19)
    • Reinforcement Learning (4)
    • Analyze Data (29)
      • Python (2)
      • Python Libraries (20)
      • Measure of similarity (7)
    • KAFKA (6)
    • d3.js (20)
    • Environment (9)
      • Anaconda (4)
      • VisualStudioCode (3)
      • Jupyter (2)
    • JavaScript (10)
    • C# (6)
    • Linux (15)
      • terminal (9)
      • Nvidia (3)
    • Docker (17)
    • Git (7)
    • Concept (8)
      • Network (3)
    • Elastic Stack (6)
      • Elasticsearch (5)
      • Logstash (1)
    • Basic Python (42)
      • FastAPI (3)
      • Data Structure (1)
      • Workbook (5)
    • DataBase (11)
      • MYSQL (6)
      • MariaDB (1)
    • Math (21)
    • About me (1)

Tag

zeros, axis, randn, global variable, batch size, randint, selectall, 3D Rotation Matrix, d3js, nvidia-smi, kafka, Sigmoid function, docker-compose, Filter, abstractmethod, classmethod, forward propagation, yield from, textdistance, Regular Expression,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/02   »
일 월 화 수 목 금 토
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

Copyright © Kakao Corp. All rights reserved.

티스토리툴바