Analyze Data/Python Libraries 20

pandas-4. read_csv, unique, to_csv, file upload, file download

read_csv - sep : Separator - names : List of column names to use. - header : To use as the column names, and the start of the data. If column names are passed explicitly then the behavior is identical to header=None. - low_memory : It results mixed type inference, so set False to ensure no mixed type. columns=['user_id', 'item_id', 'rating', 'timestamp'] df=pd.read_csv('./u.data',sep='\t', names..

numpy-array, arange, reshape, slicing, newaxis, ...(Ellipsis)

array Create an array. dtype="object" a_object = np.array([1, 0.1, 'one'], dtype=object) print(a_object) print(a_object.dtype) >>> [1 0.1 'one'] >>> object print(type(a_object[0])) print(type(a_object[1])) print(type(a_object[2])) >>> >>> >>> It stores pointers to Python objects. Since the data of each element itself is stored in each memory area, it can have multiple data types (pointers to) in..

pandas-1. Series, reindex, isnull, notnull, fillna, drop, dropna, randn, describe, nan, value_counts, map, apply, concat

pandas It is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series. 1. Series One-dimensional array with values and index can be granted to each values. import pandas as pd sr=pd.Series([1000,2000,3000,4000],index=['aaa','bbb','ccc','ddd']) sr >>>..