Deep Learning/Tensorflow 8

Keras-Preprocessing, One-hot encoding, Word Embedding , Modeling, Compile

Keras 1. Preprocessing from tensorflow.keras.preprocessing.text import Tokenizer t=Tokenizer() fit_text='The earth is an awesome place live' t.fit_on_texts([fit_text]) test_text='The earth is an great place live' sequences=t.texts_to_sequences([test_text])[0] sequences >>>[1, 2, 3, 4, 6, 7] t.word_index >>>{'an': 4, 'awesome': 5, 'earth': 2, 'is': 3, 'live': 7, 'place': 6, 'the': 1} Tokenizer.fi..

gensim, Scikit-learn, NLTK, TreebankWordTokenizer, WordPunctTokenizer, sent_tokenize, pos_tag, word_tokenize, NLP, text_to_word_sequence, Corpus

Corpus Natural Language Data NLP - Natural Language Processing gensim - It is an open source library for unsupervised topic modeling and natural language processing, using modern statistical machine learning. Scikit-learn - SciPy Toolkit. It features various classification, regression and clustering algorithms including support vector machines. NLTK - The Natural Language ToolKit, is a suite of ..