Math

Quaternion

Naranjito 2024. 9. 29. 14:43
  • Quaternion

 

A set of numbers that use Complex Numbers.

It extends the complex numbers. The algebra of quaternions is often denoted by H or by H.

If we express the three-dimensional vector in terms of the basis , we obtain .

Quaternions : with the scalar value added to it.

It can be expressed as .



Quaternions can be said to be a vector based on .
  • Quaternions multiplication rules 

 

i2=j2=k2=1ij=k,jk=i,ki=jji=k,kj=i,ik=j



ijkk=(1)kij=k

iijk=i(1)jk=i


jki=iijjki=j(1)

ki=j


jijj=jkjji=ij

kjkk=kikkj=jk

ikii=ijiik=ki
  • Quaternions operation

 

1. Addition and Subtraction

If

p^=(sp,vp),q^=(sq,vq),

then

p^+q^=(sp+sq,vp+vq)

In here,

: scalar, : vector
If

p^=(ap,bp,cp,dp), q^=(aq,bq,cq,dq)

then

p^+q^=(ap+aq,bp+bq,cp+cq,dp+dq)

p^q^=(apaq,bpbq,cpcq,dpdq)


p^+q^=(spsq,vpvq)

In here,

the operation that looks like addition is actually component-wise subtraction. Both the scalar and vector parts are subtracted, reflecting a "difference" operation between .
2. Multiplication

λp^=(λsp,λvp)=(λap,λbp,λcp,λdp)

If

p^=dp+api+bpj+cpk, q^=dq+aqi+bqj+cqk

Then,

p^q^=(dp+api+bpj+cpk)(dq+aqi+bqj+cqk)

In here,

 



dpdq+dp+dpaqi+dpbqj+dpcqk+apidq+apiaqi+apibqj+apicqk+bpjdq+bpjaqi+bpjbqj+bpjcqk+cpkdq+cpkaqi+cpkbqj+cpkcqk



Align by

dpdq+dpaqi+dpbqj+dpcqk+apdqi+apaqi2+apbqij+apcqik+bpdqj+bpaqji+bpbqj2+bpcqjk+cpdqk+cpaqki+cpbqkj+cpcqk2



Express the product of two quaternion units as one quaternion unit (ex. )

dpdq+dpaqi+dpbqj+dpcqk+apdqiapaq+apbqkapcqj+bpdqjbpaqkbpbq+bpcqi+cpdqk+cpaqjcpbqicpcq



Bind into

dpdqapaqbpbqcpcq+dpaqi+apdqi+(bpcqcpbq)i+dpbqj+bpdqj+(cpaqapcq)j+dpcqk+cpdqk+(apbqbpaq)k



Bind into .

dpdq(apaq+bpbq+cpcq)+dp(aqi+bqj+cqk)+dq(api+bpj+cpk)+(bpcqcpbq)i+(cpaqapcq)j+(apbqbpaq)k



dpdq(vpvq)+dpvq+dqvp+vp×vq

In here,

vpvq : (apaq+bpbq+cpcq),

vp=(api+bpj+cpk),

vp×vq: (bpcqcpbq)i+(cpaqapcq)j+(apbqbpaq)k.

Conclusion

 



p^q^=(dp,vp)(dq,vq)=(dpdqvpvq,dpvq+dqvp+vp×vq)

 

- Quaternion * Quaternion -> Quaternion

 

https://gaussian37.github.io/vision-concept-quaternion/

'Math' 카테고리의 다른 글

Square Matrix  (0) 2024.11.19
eigenvalue, eigenvector  (0) 2024.10.15
Tensor product(Outer product) VS Dot Product  (0) 2024.09.26
Matrix Multiplication  (0) 2024.09.26
Unit Vector VS Vector  (0) 2024.09.26