Math

Quaternion

Naranjito 2024. 9. 29. 14:43
  • Quaternion

 

A set of numbers that use Complex Numbers.

It extends the complex numbers. The algebra of quaternions is often denoted by H or by H .

If we express the three-dimensional vector in terms of the basis , we obtain .

Quaternions : with the scalar value added to it.

It can be expressed as .



Quaternions can be said to be a vector based on .
  • Quaternions multiplication rules 

 

i 2 = j 2 = k 2 = 1 i j = k , j k = i , k i = j j i = k , k j = i , i k = j



i j k k = ( 1 ) k i j = k

i i j k = i ( 1 ) j k = i


j k i = i i j j k i = j ( 1 )

k i = j


j i j j = j k j j i = i j

k j k k = k i k k j = j k

i k i i = i j i i k = k i
  • Quaternions operation

 

1. Addition and Subtraction

If

p ^ = ( s p , v p ) , q ^ = ( s q , v q ) ,

then

p ^ + q ^ = ( s p + s q , v p + v q )

In here,

: scalar, : vector
If

p ^ = ( a p , b p , c p , d p ) , q ^ = ( a q , b q , c q , d q )

then

p ^ + q ^ = ( a p + a q , b p + b q , c p + c q , d p + d q )

p ^ q ^ = ( a p a q , b p b q , c p c q , d p d q )


p ^ + q ^ = ( s p s q , v p v q )

In here,

the operation that looks like addition is actually component-wise subtraction. Both the scalar and vector parts are subtracted, reflecting a "difference" operation between .
2. Multiplication

λ p ^ = ( λ s p , λ v p ) = ( λ a p , λ b p , λ c p , λ d p )

If

p ^ = d p + a p i + b p j + c p k , q ^ = d q + a q i + b q j + c q k

Then,

p ^ q ^ = ( d p + a p i + b p j + c p k ) ( d q + a q i + b q j + c q k )

In here,

 



d p d q + d p + d p a q i + d p b q j + d p c q k + a p i d q + a p i a q i + a p i b q j + a p i c q k + b p j d q + b p j a q i + b p j b q j + b p j c q k + c p k d q + c p k a q i + c p k b q j + c p k c q k



Align by

d p d q + d p a q i + d p b q j + d p c q k + a p d q i + a p a q i 2 + a p b q i j + a p c q i k + b p d q j + b p a q j i + b p b q j 2 + b p c q j k + c p d q k + c p a q k i + c p b q k j + c p c q k 2



Express the product of two quaternion units as one quaternion unit (ex. )

d p d q + d p a q i + d p b q j + d p c q k + a p d q i a p a q + a p b q k a p c q j + b p d q j b p a q k b p b q + b p c q i + c p d q k + c p a q j c p b q i c p c q



Bind into

d p d q a p a q b p b q c p c q + d p a q i + a p d q i + ( b p c q c p b q ) i + d p b q j + b p d q j + ( c p a q a p c q ) j + d p c q k + c p d q k + ( a p b q b p a q ) k



Bind into .

d p d q ( a p a q + b p b q + c p c q ) + d p ( a q i + b q j + c q k ) + d q ( a p i + b p j + c p k ) + ( b p c q c p b q ) i + ( c p a q a p c q ) j + ( a p b q b p a q ) k



d p d q ( v p v q ) + d p v q + d q v p + v p × v q

In here,

v p v q : ( a p a q + b p b q + c p c q ) ,

v p = ( a p i + b p j + c p k ) ,

v p × v q : ( b p c q c p b q ) i + ( c p a q a p c q ) j + ( a p b q b p a q ) k .

Conclusion

 



p ^ q ^ = ( d p , v p ) ( d q , v q ) = ( d p d q v p v q , d p v q + d q v p + v p × v q )

 

- Quaternion * Quaternion -> Quaternion

 

https://gaussian37.github.io/vision-concept-quaternion/

'Math' 카테고리의 다른 글

Square Matrix  (0) 2024.11.19
eigenvalue, eigenvector  (0) 2024.10.15
Tensor product(Outer product) VS Dot Product  (0) 2024.09.26
Matrix Multiplication  (0) 2024.09.26
Unit Vector VS Vector  (0) 2024.09.26