Analyze Data/Python Libraries

numpy-ogrid VS mgrid

Naranjito 2023. 11. 17. 19:20
  • ogrid VS mgrid

- ogrid

np.ogrid[row(list of size), column(a single list)]
np.ogrid[0:3, 0:5]

>>>
array([[0],
       [1],
       [2]])
array([[0, 1, 2, 3, 4]])

 

- mgrid

np.mgrid[row(filled with the same number by row), column(filled with the same number by column)]
np.mgrid[0:3, 0:5]

>>>
array([[[0, 0, 0, 0, 0],
        [1, 1, 1, 1, 1],
        [2, 2, 2, 2, 2]],

       [[0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4]]])

 

  • ogrid VS mgrid with j(evenly spaced)
np.ogrid[row-start:end:piecesj,column-start:end:piecesj]

 

- ogrid

np.ogrid[-1:1:3j, -1:1:5j]

>>>
[array([[-1.],
        [ 0.],
        [ 1.]]), array([[-1. , -0.5,  0. ,  0.5,  1. ]])]

 

- mgrid

np.mgrid[-1:1:3j, -1:1:5j]

>>>
array([[[-1. , -1. , -1. , -1. , -1. ],
        [ 0. ,  0. ,  0. ,  0. ,  0. ],
        [ 1. ,  1. ,  1. ,  1. ,  1. ]],

       [[-1. , -0.5,  0. ,  0.5,  1. ],
        [-1. , -0.5,  0. ,  0.5,  1. ],
        [-1. , -0.5,  0. ,  0.5,  1. ]]])

 

  • ogrid VS mgrid Without j(considered as stack)

- ogrid

np.ogrid[-1:1:3, -1:1:5]

>>>
[array([[-1]]), array([[-1]])]

 

- mgrid

np.mgrid[-1:1:3, -1:1:5]

>>>
array([[[-1]],

       [[-1]]])

 

'Analyze Data > Python Libraries' 카테고리의 다른 글

numpy-zeros, zeros_like  (0) 2024.03.22
numpy-pad  (0) 2023.12.26
EasyDict  (0) 2023.10.18
numpy-concatenate  (0) 2023.06.07
numpy-identity  (0) 2023.06.02