- pad
Pad an array.
numpy.pad(array, pad_width, mode='constant', **kwargs)
Example 1.
(1,2) : low_before, low_after
(6,7) : col_before, col_after
b=[[1,2],[3,4],]
np.pad(b, ((1,2),(6,7)),'constant', constant_values=0)
>>>
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
Example 2.
c=np.random.rand(1,3,3,3)
>>>
array([[[[0.93716004, 0.62682997, 0.29226598],
[0.63802039, 0.4492049 , 0.52920476],
[0.7873862 , 0.13877556, 0.43151375]],
[[0.43483542, 0.27225612, 0.03929342],
[0.63393174, 0.34305449, 0.99672895],
[0.750275 , 0.96819218, 0.32382205]],
[[0.77675184, 0.68849961, 0.38730129],
[0.17889086, 0.16309005, 0.91900711],
[0.00571749, 0.20271086, 0.70276315]]]])
The result is below.
(0,0),(0,1),(0,1),(0,0)
1d, 2d, 3d, 4d
(before, after) ・・・
np.pad(c,((0,0),(0,1),(0,1),(0,0)), 'constant', constant_values=0)
>>>
array([[[[0.93716004, 0.62682997, 0.29226598],
[0.63802039, 0.4492049 , 0.52920476],
[0.7873862 , 0.13877556, 0.43151375],
[0. , 0. , 0. ]],
[[0.43483542, 0.27225612, 0.03929342],
[0.63393174, 0.34305449, 0.99672895],
[0.750275 , 0.96819218, 0.32382205],
[0. , 0. , 0. ]],
[[0.77675184, 0.68849961, 0.38730129],
[0.17889086, 0.16309005, 0.91900711],
[0.00571749, 0.20271086, 0.70276315],
[0. , 0. , 0. ]],
[[0. , 0. , 0. ],
[0. , 0. , 0. ],
[0. , 0. , 0. ],
[0. , 0. , 0. ]]]])
'Analyze Data > Python Libraries' 카테고리의 다른 글
numpy-zeros, zeros_like (0) | 2024.03.22 |
---|---|
numpy-ogrid VS mgrid (0) | 2023.11.17 |
EasyDict (0) | 2023.10.18 |
numpy-concatenate (0) | 2023.06.07 |
numpy-identity (0) | 2023.06.02 |