Deep Learning/Object Detection

(prerequisite-YOLO) DarkNet

Naranjito 2024. 2. 11. 19:13
  • DarkNet

It inspired by the structure of GoogleNet.

It has been designed for generating a final feature map that fits the size of the prediction, 7x7x30 for YOLO v1.

It consists of a total of 24 conv layers and 2 fc layers.

DarkNet trained by ImageNet dataset. 

 

  • Image size

- 224x224 : When it trains for classification task.

 

 

https://www.jeremyjordan.me/object-detection-one-stage/


- 448x448 When it trains for detection task, increase the size of the image for refinement to improve performance.

 


  • Pretrained

The previous 20 conv layers were pretrained with 1000 classes of ImageNet datasets.

 

  • Fine tuned

Four conv layers and two fc layers were added to the back and fine tuned with Pascal VOC data.

 

  • Reduction layer

Reduce computation with 1x1 reduction layer

 

https://dotiromoook.tistory.com/24

https://herbwood.tistory.com/13

'Deep Learning > Object Detection' 카테고리의 다른 글

YOLO(You Only Look Once)  (0) 2024.02.12
(prerequisite-YOLO) One Stage Object Detection  (0) 2024.02.11
Faster RCNN  (0) 2024.01.30
Fast RCNN  (0) 2024.01.29
(prerequisite-Fast R-CNN) Truncated SVD  (0) 2024.01.26