Math

Least Square Method(Least Mean Square)

Naranjito 2024. 3. 8. 17:16
  • Least Square Method(Least Mean Square)

 

 

The way how to obtain parameters to minimize the sum of data and residual(error).

In other words, to obtain parameters(a, b) with minimum E.

 

- y = f(x) : Linear

- ei : Residual(Error)

- (xi, yi) : Data

- a, b : Parameters


  • y = f(x) : Linear Regression

 

It can be expressed as below.


  • Error

 

Distance between the point and y.


  • Sum of the square errors 

 

 


  • Matrix Equation

 

 

Y : Data y.

A : Data x, Column vectors with all elements 1.

X : The goal, a coefficient of 'y = ax + b'.


1. 

 

ax + b = y is same as below.


2. Get X.

 


Example.

 

1) Data

 


2) Set the Y, A, X

 


3) Get X.

 

 

4) Get the Linear Regression

 

 

https://darkpgmr.tistory.com/56

https://terms.naver.com/entry.naver?docId=3569970&cid=58944&categoryId=58970

https://subprofessor.tistory.com/104

'Math' 카테고리의 다른 글

Complex Number  (0) 2024.03.29
Integral, integration  (0) 2024.03.08
Differential, Differentiation, Derivative  (0) 2023.12.12
variance, Standard deviation, Covariance, Correlation Coefficient  (0) 2023.06.14
Logarithmic(log), Exponential(exp)  (0) 2023.05.26