- Least Square Method(Least Mean Square)
The way how to obtain parameters to minimize the sum of data and residual(error).
In other words, to obtain parameters(a, b) with minimum E.
- y = f(x) : Linear
- ei : Residual(Error)
- (xi, yi) : Data
- a, b : Parameters
- y = f(x) : Linear Regression
It can be expressed as below.
- Error
Distance between the point and y.
- Sum of the square errors
- Matrix Equation
Y : Data y.
A : Data x, Column vectors with all elements 1.
X : The goal, a coefficient of 'y = ax + b'.
1.
ax + b = y is same as below.
2. Get X.
Example.
1) Data
2) Set the Y, A, X
3) Get X.
4) Get the Linear Regression
https://darkpgmr.tistory.com/56
https://terms.naver.com/entry.naver?docId=3569970&cid=58944&categoryId=58970
'Math' 카테고리의 다른 글
Complex Number (0) | 2024.03.29 |
---|---|
Integral, integration (0) | 2024.03.08 |
Differential, Differentiation, Derivative (0) | 2023.12.12 |
variance, Standard deviation, Covariance, Correlation Coefficient (0) | 2023.06.14 |
Logarithmic(log), Exponential(exp) (0) | 2023.05.26 |